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Fourier Transformation, Martingale, and the Pricing of

Average-Rate Derivatives

Abstract

In this paper, a general way to compute the density of the arithmetic average of a

Markov process is proposed. This approach is then applied to the pricing of average

rate options (Asian options). It is demonstrated that as long as a closed form formula

is available for the discount bond price when the underlying process is treated as the

riskless interest rate, analytical formulas for the density function of the arithmetic

average and the Asian option price can be derived. This includes the a�ne class of

term-structure models. The CIR (1985) square-root interest rate process is used as

an example. When the underlying process follows a geometric Brownian motion, a

very e�cient numerical method is proposed for computing the density function of the

average. Extensions of the techniques to the cases of multiple state variables are also

discussed.



1 Introduction

Although Asian options1 are not traded on any exchanges, they are among the most actively

traded derivatives in the over-the-counter markets. There are several reasons that they are

so popular. First, because the payo� function of an Asian option not only depends on

the value of the underlying process at the maturity date but also depends on the whole

sample path for some �nite interval, price manipulation is less likely and has less impact

on the payo� of the option. Second, since the payo� function depends on the average of

the underlying process, it also reduces the risk associated with the value of the underlying

process on the maturity date. Third, if the objective is to hedge against average movements

of the underlying asset, an average-rate option is obviously a more appropriate instrument

to use than regular options.

Features of Asian options appear in many di�erent types of contracts. For example, op-

tions on oils are typically settled against an average of daily or monthly prices. In the foreign

exchange market, Asian options can be used to hedge against currency movements. Similarly,

Asian options on interest rate can be used to hedge against interest rate movements.

Asian options belong to the so-called path-dependent derivatives. Path-dependent deriva-

tives are among the most di�cult derivatives to price and hedge both analytically and nu-

merically. Several approaches have been proposed in the literature to price and hedge Asian

options. Kemna and Vorst (1990) use Monte Carlo simulation to price and hedge Asian

options. To reduce the variance of their simulation, they use the corresponding geometric

average option as their control variable. Although Monte Carlo simulation is a very 
exi-

ble method for pricing path-dependent European options, it is very time-consuming. Their

method also has the drawback that if the underlying process for averaging is not log-normal,

1In this article, options and derivatives are used interchangeably.
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a closed-form solution for some control variable may not exist. Therefore in order to ensure

convergence, even longer time-consuming simulation may be needed. A further drawback

of their approach is that to compute the hedging parameters, a new simulation is needed

starting with a slightly di�erent initial stock price.2 Obviously, less time-consuming methods

are desired.

Turnbull and Wakeman (1991) use an Edgeworth series expansion to approximate the

density function of the average rate. They succeed in deriving closed-form formulas for the

Asian options. Their approach, however, su�ers two drawbacks. First, convergence is not

assured for all possible parameters; Second, their method does not apply if the underlying

process is not log-normal. Levy (1992) uses the log-normal density as a �rst-order approx-

imation to the true density of the average price. Levy's approximation corresponds to that

of Turnbull and Wakeman by keeping only the �rst term in the Edgeworth series expansion

and thus shares the same drawbacks as those of Turnbull and Wakeman's approach. An-

other analytical method is Geman and Yor (1993). They obtain a semi-analytical formula

for the price of an Asian option using the Laplace transformation technique when the under-

lying process is log-normal. Besides the di�cult numerical problem of inverting the Laplace

transformation, their method requires the underlying process to be log-normal.

Rogers and Shi (1995) succeed in advancing the pricing of Asian options in another

direction. By making a suitable change of variables, they are able to transform the original

three-dimensional (including the time dimension) partial di�erential equation (PDE) satis�ed

by the price of an Asian option into a two-dimensional PDE. This is a tremendous reduction

of complexity in terms of computation. But their approach requires the underlying process

to be log-normal and the terminal payo� to be simple functions of the average rate, like those

2It can be shown that the delta of the hedging portfolio is: � = @P (S(t); A(t);K)=@S(t), where P is the

option price, S the stock price, and A the running sum so far, and K the strike price.

2



of regular Asian calls and puts. Furthermore, their PDE has to be solved for each di�erent

option.

Some other numerical methods include Hull and White (1993), Dewynne and Wilmott

(1993) and Carverhill and Clewlow (1990). Hull and White (1993) extend the binomial tree

approach for pricing path-dependent options. They use a vector to hold the average rates

at each node of the tree. Dewynne and Wilmott (1993) apply a similar idea to the PDE

approach for pricing Asian options. Given the density functions of two random variables, the

convolution gives the density function of the sum of these two random variables. Carverhill

and Clewlow (1990) use the convolution method repeatedly to obtain the density function of

the average rate in an Asian option. Even though these methods are simple to apply, they

are all time-consuming.

In this paper, yet another approach to the pricing of Asian options is proposed. Instead of

solving a multi-dimensional PDE satis�ed by the price of an Asian option directly, the risk-

neutral density function of the average rate is obtained �rst. Even though it is very di�cult

to determine the density function of the average value of a general Markov process, it will be

shown in section 2 that the Fourier transformation of the density function satis�es a PDE

with a simple terminal condition. The Fourier inverse transformation yields the density

function. The price of an Asian option is then simply the expectation of the discounted

terminal payo�.

It is further shown that the computation can be simpli�ed tremendously for two of

the most widely used stochastic processes in �nance, the CIR (1985) square-root process

for interest rates and the log-normal process for equities. In the former case, closed-form

formulas3 are obtained for the density function of the average interest rate and the prices of

3It is in the same sense that the normal distribution function is considered closed-form even though it is

represented by an integral.
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Asian options. In the latter case, a very e�cient numerical procedure is proposed to compute

the density function of the average equity prices.

For a general Markov process, the density function can be obtained in a straightforward

manner at considerable more computing cost. But this method could still be preferred.

First, one still only needs to solve a PDE with a lower dimensionality. Second, once the

density function is obtained, fast numerical integration can be used to price all average price

options. These options could be regular Asian calls and puts with di�erent strikes or some

other Asian derivatives whose payo�s can be any functional form of the average price. On the

other hand, the PDE-based methods would require solving the PDE once for each di�erent

option. Lastly, hedging parameters can be obtained with minimal additional computing cost.

The remainder of the paper is organized as follows. A general approach for computing

the density function of the average value of a general Markov process is proposed in section

2. In section 3, the method developed in section 2 is applied to the CIR (1985) square-root

process for pricing average interest rate options. The approach is specialized to the familiar

log-normal process for equity Asian options in section 4. Section 5 discusses extensions of

the techniques to multiple state variables models, including multi-factor interest rate models

for pricing average interest rate options and stochastic interest rate models for pricing equity

average rate options. Section 6 summarizes and concludes the article. The more technical

details, including the change of probability measure and its application to the CIR (1985)

square-root process, are provided in appendices.
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2 Computing the Density Function of the Average-

Rate Process

In this section, the general partial di�erential equation (PDE) satis�ed by the characteristic

function of the arithmetic sum4 during a �nite interval for a general Markov process is

derived. A connection between the Fourier transformation of the density function of the

sum5 and the characteristic function of the sum is established.6 This observation allows one

to obtain the density function of the sum by inverting the Fourier transformation.

Consider a nonnegative Markov process:

dx(t) = �(x; t)dt+ �(x; t)dw(t); (1)

where dw(t) is a standard Wiener process. Let y(t) =
R t
0 x(u)du represent the arithmetic

sum of x(�). The characteristic function of y(t) is de�ned by

F (x(0); �; t) = E0 [exp(�i�y)] =
Z
1

0
e�i�yf(y)dy; (2)

where f(�) is the density function of y(t).

Next, a new function g(�) is de�ned by

g(y) =

(
f(y); if y � 0

f(�y); if y < 0:

That is, g(�) is f(�) extended evenly to the negative axis.7 The Fourier transformation of

4For ease of exposition, the arithmetic sum instead of the arithmetic average is used. The density functions

of the two relate to each other by the scaling of the length of the averaging interval. For pricing Asian options,

one can scale the strike price and then use the density function of the arithmetic sum.
5\sum" refers to the arithmetic sum (integration) of the values of the underlying process during a �nite

interval.
6In this article, it is assumed that the underlying Markov process is nonnegative because most of the

stochastic processes in �nance have this property. If the underlying process can have any real values, the

characteristic function of the sum is the Fourier transformation of the density function of the sum. The

method developed here would apply with little change.
7One could have assumed g(�) to be zero along the negative axis, but then the Fourier transformation

will be complex. The present extension of the function is preferred.
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g(�) is de�ned by8

G(�) =
Z
1

�1

e�i�yg(y)dy: (3)

Since g(�) is real and even, it is easy to see that

G(�) =
Z
1

0
2 cos(�y)g(y)dy = 2R

�Z
1

0
e�i�yf(y)dy

�
= 2R (F (x(0); �; t)) (4)

is real and even too. R(F (x(0); �; t)) denotes the real part of F (x(0); �; t).

The inverse transformation is given by (only need to consider y � 0)

g(y) =
1

2�

Z
1

�1

ei�yG(�)d�: (5)

Since G(�) is real and even,

g(y) =
1

2�

Z
1

0
2 cos(�y)G(�)d�: (6)

Therefore,

f(y) =
2

�

Z
1

0
cos(�y)R(F (x(0); �; t)); y � 0: (7)

Consequently, if F (x(0); �; t) is found, the Fourier inverse transformation can be used to

compute the density function of the sum.

To �nd F (x(0); �; t), de�ne

F (x(s); �; t� s) = Es

�
exp(�i�

Z t

s
x(u)du)

�
: (8)

It is clear that F (x(s); �; t � s) is similar to the bond price at time s with maturity date t

for an imaginary interest rate process i�x(u). As a matter of fact, F (x(s); �; t� s) satis�es

8The Fourier component is usually represented by k. The use of � here is to avoid confusion with the

parameter � in the CIR (1985) square-root process in the next section.
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a PDE similar to the one satis�ed by the bond price if x(t) is the interest rate under the

risk-neutral measure. Formally, de�ne

F �(x(s); �; t� s) = exp(�i�
Z s

0
x(u)du)F (x(s); �; t� s) = Es

�
exp(�i�

Z t

0
x(u)du)

�
: (9)

Since the argument of the conditional expectation on the right-hand side is independent of

s, the left-hand side is a martingale. Therefore the drift of F �(x(s); �; t � s) must vanish.

Ito's lemma yields

dF � = exp(�i�
Z s

0
x(u)du)

�
�i�xF + Fs + �(x; s)Fx +

1

2
�2(x; s)Fxx

�
ds+

exp(�i�
Z s

0
x(u)du)�(x; s)Fxdw: (10)

Setting the drift of dF � equal to zero, the following PDE

�i�xF + Fs + �(x; s)Fx +
1

2
�2(x; s)Fxx = 0 (11)

is obtained. The terminal condition is

F (x(t); �; 0) = (1; 0):9

As just mentioned, this PDE is the fundamental valuation equation for any contingent claim

as if the interest rate were purely imaginary and the terminal condition resembles that of a

default-free discount bond.

For a general Markov process x(t), a closed-form solution for the above PDE subject to

the terminal condition may not be available and numerical methods have to be used to solve

the PDE. Nevertheless, the di�cult problem of �nding the density function of the sum has

been transformed into a problem of solving a two-dimensional (including time dimension)

PDE subject to a simple terminal condition.

9The notation is to emphasize the fact that F is generally complex.
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For some of the most widely used stochastic processes in �nance, like the CIR (1985)

square-root process for interest rates and the log-normal process for equity prices, tremendous

simpli�cations are possible. For the former, because a closed-form solution for the discount

bond price is known, a simple scaling of the parameters gives the solution of the above

PDE. For the latter, because of the linearity of the stochastic di�erential equation dx =

�xdt + �xdw, where � and � are constants, F (x(0); �; t) can be obtained for di�erent �'s

and t's by solving the PDE once.10 Once the density function of the sum is obtained, Asian

options can be priced using numerical integration, which is a very quick process.

3 Pricing of Average CIR (1985) Square-Root Interest

Rate Options

When the underlying process follows the CIR (1985) square-root process, the density of the

sum can be obtained analytically. Therefore closed-form solutions are available for average

interest rate options.

Let the interest rate process under the risk-neutral measure Q be given by

dr = �(� � r)dt+ �
p
rdwQ; (12)

and the arithmetic sum of r(u) from u = s to u = t be given by

y(t) =
Z t

s
r(u)du: (13)

For this interest rate process, the discount bond price at time s with maturity date t is given

by

�(�; �; �; r(s); t� s) = EQ
s

�
e�
R t
s
r(u)du

�
=
Z
1

0
e�yf(y)dy = A(t� s)e�B(t�s)r(s); (14)

10For more detail, see subsection 4.3.
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where f(�) is the density function of y(t), and A(t� s) and B(t� s) are given by

A(t� s) =

 
2�e(�+�)(t�s)=2

(�+ �)(e�(t�s) � 1) + 2�

! 2��

�2

;

B(t� s) =
2(e�(t�s) � 1)

(�+ �)(e�(t�s) � 1) + 2�
;

where � =
p
�2 + 2�2. Note that �(�; �; �; r(s); t � s) satis�es the following fundamental

evaluation PDE

�r� + �s + �(� � r)�r +
1

2
�2r�rr = 0; (15)

and the terminal condition

�(�; �; �; r(t); 0) = 1:

Now consider

�̂(�; t� s) = EQ
s

�
e��

R t
s
r(u)du

�
=
Z
1

0
e��yf(y)dy for some real � � 0:

If one de�nes z = �r, then

�̂(�; t� s) = EQ
s

�
e�
R t
s
z(u)du

�
;

and z(u) satis�es

dz = �(�� � z)dt+
p
��
p
zdwQ:

This is the CIR (1985) square-root process similar to r(u) with di�erent parameters, and

z(s) = �r(s), so

�̂(�; t� s) =
Z
1

0
e��yf(y)dy = �(�; ��;

p
��; �r(s); t� s): (16)
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Finally, consider

F (r(s); �; t� s) = EQ
s

�
e�i�

R t
s
r(u)du

�
=
Z
1

0
e�i�yf(y)dy:

Since both
R
1

0 e��yf(y)dy and
R
1

0 e�i�yf(y)dy are integrable (In fact, j R10 e�i�yf(y)dyj � 1.),

they must have the same functional forms in terms of � and i�. Therefore

F (r(s); �; t� s) = EQ
s

�
e�i�

R t
s
r(u)du

�
=
Z
1

0
e�i�yf(y)dy =

�(�; i��;
q
i��; i�r(s); t� s) = ~A(t� s)e�i�

~B(t�s)r(s); (17)

where

~A(t� s) =
�
~Z(t� s)

� 2��

�2 ; (18)

~Z(t� s) =
2�e(�+�)(t�s)=2

(�+ �)(e�(t�s) � 1) + 2�
; (19)

~B(t� s) =
2(e�(t�s) � 1)

(�+ �)(e�(t�s) � 1) + 2�
; (20)

and � =
p
�2 + 2i��2. It should be pointed out that even though � is double-valued, both

~Z(t � s) and ~B(t � s) are single-valued functions. When 2��
�2

is not an integer, ~A(t � s)

is multi-valued and its principal branch should be chosen. These properties are veri�ed in

Appendix A.

It is easy to check that F (r(s); �; t� s) satis�es the PDE

�i�rF + Fs + �(� � r)Fr +
1

2
�2rFrr = 0;

which is derived in the previous section, and the terminal condition

F (r(t); �; 0) = (1; 0):

It is worthwhile to emphasize again the similarities between the Fourier transformation

of the arithmetic sum F (r(s); �; t � s)11 and the discount bond price P (�; �; �; r(s); t � s).

11The Fourier transformation of the arithmetic sum and the characteristic function of the sum will be used

interchangeably in the following. The context should make it clear which one is meant.
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The analytical formulas for them are similar. They also satisfy similar PDE's and terminal

conditions. Recognizing the similarity between them is the key insight of this paper which

allows one to price Asian options in an e�cient and novel way.

It follows from the previous section that the density function is given by

f(y) =
2

�

Z
1

0
cos(�y)R(F (r(s); �; t� s))d�: (21)

This density function of the sum of the interest rate process can be used to price Asian

interest rate derivatives. Assume the current time is t, and the averaging period is from T 0

to T , so the payo� of a European Asian put at T is given by p(T ) = (K � A(T ))+, where

A(T ) =
Z T

T 0
r(u)du:

Two cases need to be considered separately: (1) time-to-maturity is shorter than the

length of the averaging period, and (2) time-to-maturity is longer than the length of the

averaging period. Only Asian puts will be considered. The prices of otherwise identical calls

can be obtained from the put-call parities.

3.1 Case I: time-to-maturity is shorter than the length of the av-

eraging period.

When t � T 0,

A(T ) =
Z t

T 0
r(u)du+

Z T

t
r(u)du = A(t) +

Z T

t
r(u)du:

Using the risk-neutral pricing methods of Cox and Ross (1975), and Harrison and Kreps

(1979), the current price of the put is given by

p(t) = E
Q
t

"
e�
R T
t
r(u)du(K � A(t)�

Z T

t
r(u)du)+

#

=
Z
1

0
e�y (K � A(t)� y)

+
f(y)dy; (22)

where f(y) is the density function of y =
R T
t r(u)du.
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3.1.1 Simpli�cations

When A(t) � K, the Asian put is going to �nish out of the money for sure and therefore

p(t) = 0 if A(t) � K: (23)

When A(t) < K, the pricing of an Asian put can be reduced to a one-dimensional integral.

First note that

f(y) =
2

�

Z
1

0
cos(�y)R(F (r(t); �; T � t))d�:

Therefore

p(t) =
2

�

Z
1

0

Z
1

0
e�y (K � A(t)� y)+ cos(�y)R(F (r(t); �; T � t))d�dy

=
2

�

Z
1

0
R(F (r(t); �; T � t))d�

Z K�A(t)

0
e�y (K � A(t)� y) cos(�y)dy

=
2

�

Z
1

0
R(F (r(t); �; T � t))I(�)d�; (24)

where

I(�) =
Z K�A(t)

0
e�y (K � A(t)� y) cos(�y)dy =

e�(K�A(t))

(1 + �2)2h
(1� �2) cos(�(K � A(t)))� 2� sin(�(K � A(t)))

i
+

1

1 + �2
(K � A(t)� 1� �2

1 + �2
):

3.1.2 Put-call parity

The terminal payo�s of the call and put are related by

c(T ) = (A(T )�K)+ = (A(T )�K) + (K � A(T ))+ = A(T )�K + p(T ):

Therefore,

c(t) = E
Q
t [e

�

R T
t
r(u)duc(T )] = E

Q
t [e

�

R T
t
r(u)du(A(T )�K)] + p(t)
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= E
Q
t [e

�

R T
t
r(u)du(A(t) +

Z T

t
r(u)du�K)] + p(t)

= �(r(t); T � t)(A(t)�K) + V (r(t); T � t) + p(t); (25)

where �(r(t); T � t)12 is the discount bond price at time t with maturity date T and

V (r(t); T � t) is given by

V (r(t); Tt) = E
Q
t [e

�

R T
t
r(u)du

Z T

t
r(u)du]:

V (r(t); T � t) can be evaluated in closed-form using the following manipulation:

V = � @

@�
E
Q
t

�
e��

R T
t
r(u)du

�
j�=1 = � @

@�
�̂(�; T � t)j�=1 = �(r(t); T � t)

h
B(T � t)r(t) 

1 +
�2(T � t)e�(T�t)

�(e�(T�t) � 1)
� �2(e�(T�t) � 1) + (�+ �)�2(T � t)e�(T�t) + 2�2

�((�+ �)(e�(T�t) � 1) + 2�)

!
�

2��

�

 
1

�
+
T � t

2
� (e�(T�t) � 1) + (�+ �)(T � t)e�(T�t) + 2

(�+ �)(e�(T�t) � 1) + 2�

! i
: (26)

3.2 Case II: time-to-maturity is longer than the length of the av-

eraging period.

When t < T 0, the payo� of an Asian put at the terminal date is

p(T ) =

 
K �

Z T

T 0
r(u)du

!+

:

Thus the price of the put at time t is

p(t) = E
Q
t

2
4e� R Tt r(u)du

 
K �

Z T

T 0
r(u)du

!+
3
5 =

E
Q
t

2
4e� R T 0t

r(u)duE
Q
T 0

2
4e�R TT 0 r(u)du

 
K �

Z T

T 0
r(u)du

!+
3
5
3
5 ; (27)

12For simplicity, other parameters are omitted in the bond price formula except time-to-maturity and spot

interest rate.
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where the second equality follows from the law of iterative expectations. Let

H(r(T 0)) = E
Q
T 0

"
e�
R T
T 0
r(u)du(K �

Z T

T 0
r(u)du)+

#
=
Z
1

0
e�y(K � y)+f(y)dy; (28)

where f(y) is the density function of y =
R T
T 0 r(u)du.

Using the forward risk-neutral measure R which is derived in Appendix B, equation (27)

can be rewritten as

p(t) = E
Q
t [e

�

R T 0
t

r(u)duH(r(T 0)] = �(r(t); T 0 � t)ER
t [H(r(T 0)]

= �(r(t); T 0 � t)
Z
1

0
H(z)g(z)dz; (29)

where g(z), given in Appendix C, is the density function of r(T 0) under the forward risk-

neutral measure R.

3.2.1 Simpli�cations

Since

f(y) =
2

�

Z
1

0
cos(�y)R(F (r(t); �; T � t))d�;

it follows that

H(r(T 0)) =
2

�

Z
1

0
R(F (r(t); �; T � t))d�

Z K

0
e�y (K � y) cos(�y)dy

=
2

�

Z
1

0
R(F (r(t); �; T � t))I(�)d�; (30)

where

I(�) =
Z K

0
e�y(K � y) cos(�y)dy =

e�K

(1 + �2)2
[(1� �2) cos(�K)�

2� sin(�K)] +
1

1 + �2
(K � 1� �2

1 + �2
):
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3.2.2 Put-call parity

c(t) = E
Q
t [e

�

R T
t
r(u)duc(T )] = E

Q
t [e

�

R T
t
r(u)du(A(T )�K)] + p(t)

= p(t)� �(r(t); T � t)K + E
Q
t [e

�

R T
t
r(u)du

Z T

T 0
r(u)du]

= p(t)� �(r(t); T � t)K + E
Q
t [e

�

R T 0
t

r(u)duE
Q
T 0 [e

�

R T
T 0
r(u)du

Z T

T 0
r(u)du]]

= p(t)� �(r(t); T � t)K + E
Q
t [e

�

R T 0
t

r(u)duV (r(T 0); T � T 0)]

= p(t)� �(r(t); T � t)K + �(r(t); T 0 � t)
Z
1

0
V (z; T � T 0)g(z)dz; (31)

where V (r(T 0); T � T 0) is given in equation (26) and g(z) in Appendix C.

3.2.3 Computation e�ciency consideration

For interest rates and foreign exchange rates, there are reasons to believe that the CIR (1985)

square-root process is a more appropriate description than the log-normal process. First,

the expectation of the future value of a log-normal process increases exponentially. But it is

very unlikely that the expected future interest rates or the expected future foreign exchange

rates will increase monotonically. The CIR (1985) square-root process also has the desired

property that it is mean-reverting. Nevertheless, most of the work on the pricing of Asian

options, whether they are equity Asian options, or interest rate Asian options, or currency

Asian options, etc, has assumed the underlying process to be log-normal for tractability. In

cases where the CIR (1985) square-root process is more appropriate, except the Monte Carlo

simulation of Kemna and Vorst (1990), none of the methods mentioned in the introduction

is applicable.13

In the case of subsection 3.1 (time-to-maturity is shorter than the length of the averaging

period), the usual PDE approach would have to solve a three-dimensional (including the

13Besides Monte Carlo simulation, the usual PDE approach is also applicable. But the variable reduction

technique of Rogers and Shi (1995) would not apply.
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time dimension) PDE once to obtain the option price in equation (24). In the present

approach, the computation is reduced to a one-dimensional integral (see equation (24)), a

one-dimensional problem. The dimensionality of the problem has been reduced by two.

In the case of subsection 3.2 (time-to-maturity is longer than the length of the averaging

period), the usual PDE approach would have to solve a three-dimensional PDE many times

to obtain H(r(T 0)) (see equation (28)) for di�erent r(T 0). These H(r(T 0))'s are needed

to obtain the option price in equation (29). In the usual PDE approach, the expectation

in equation (29) can be obtained by solving a two-dimensional PDE using the H(r(T 0))'s

as the terminal values. Therefore, the PDE approach in this case is essentially a four-

dimensional problem (solving a three-dimensional PDE many times). On the other hand,

the present approach involves only a two-dimensional integral (see equations (29) and (30)),

a two-dimensional problem. Therefore in this case too the present approach has reduced the

dimensionality of the problem by two.

4 Pricing of Average Log-Normal Equity Options

The pricing of equity Asian options is considered in this section. Throughout this section

the Black and Scholes (1973) economy in which the riskless interest rate is a constant and

the underlying equity price follows a log-normal process is assumed. Let the process under

the risk-neutral measure Q be given by14

dS(t) = rS(t) dt+ �S(t) dwQ(t); (32)

where dwQ(t)is a standard Wiener process under Q.

Assume the current time is t, and the averaging period is from T 0 to T , so the payo� of

14It is assumed that the stock pays no dividend. A constant dividend yield can be easily incorporated.
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a European Asian put at T is given by P (T ) = (K � A(T ))+, where

A(T ) =
Z T

T 0
S(u)du:

Again, two cases need to be considered: (1) time-to-maturity is shorter than the length

of the averaging period, and (2) time-to-maturity is longer than the length of the averaging

period. Only Asian puts will be considered. The prices of otherwise identical calls will be

given in terms of put-call parities.

4.1 Case I: time-to-maturity is shorter than the length of the av-

eraging period.

When t � T 0,

A(T ) =
Z t

T 0
S(u)du+

Z T

t
S(u)du = A(t) +

Z T

t
S(u)du:

It will become clear that it is convenient and e�cient to de�ne X(u) = S(u)=S(t). The price

of an Asian put at time t is

P (t) = e�r(T�t)E
Q
t

h
(K � A(T ))+

i
= e�r(T�t)

Z
1

0
(K � A(t)� S(t)y)+f(y)dy: (33)

where f(�) is the density function of y =
R T
t X(u)du.

No analytical formula is known for the density function of y, numerical method has to

be employed. In subsection 4.3 a very e�cient algorithm is presented for computing this

density function.

4.1.1 Simpli�cations

If A(t) � K, the price of an Asian put is easily seen to be zero:

P (t) = 0 if A(t) � K: (34)
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If A(t) < K, equation (33) can be reduced to a one-dimensional integral. Let F (�; T � t)15

be the Fourier transformation of f(y), then

f(y) =
2

�

Z
1

0
cos(�y)R(F (�; T � t))d�:

It follows that

P (t) =
2

�
e�r(T�t)

Z
1

0

Z
1

0
(K � A(t)� S(t)y)

+
cos(�y)R(F (�; T � t))d�dy

=
2

�
e�r(T�t)

Z
1

0
R(F (�; T � t))d�

Z K�A(t)

S(t)

0
(K � A(t)� S(t)y) cos(�y)dy

=
2

�
e�r(T�t)

Z
1

0
R(F (�; T � t))I(�)d�; (35)

where

I(�) =
Z K�A(t)

S(t)

0
(K � A(t)� S(t)y) cos(�y)dy =

S(t)

�2

 
1� cos

�(K � A(t))

S(t)

!
:

4.1.2 Put-call parity

The terminal payo� functions of the call and put are related by

C(T ) = (A(T )�K)+ = (A(T )�K) + (K � A(T ))+ = (A(T )�K) + P (T ):

Discounting, one has

C(t) = e�r(T�t)E
Q
t [(A(T )�K)+] = e�r(T�t)E

Q
t [A(T )�K] + P (t)

= e�r(T�t)E
Q
t [A(T )]� e�r(T�t)K + P (t)

Since A(T ) = A(t) +
R T
t S(u)du,

E
Q
t [A(T )] = A(t) +

Z T

t
E
Q
t [S(u)]du = A(t) + S(t)(er(T�t) � 1)=r:

Therefore, the prices of an Asian call and an otherwise identical put are related by

C(t) = P (t) + er(T�t)(A(t)�K) + S(t)(1� e�r(T�t))=r: (36)

15Since the X(u) = S(u)=S(t) (u � t) process always starts at X(t) = 1, the initial value of X(t) is

omitted in F (�; T � t).
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4.1.3 Hedging parameters

Because of the explicit form of P (t) in terms of S(t) and A(t), the portfolio hedging param-

eters can be easily obtained:

� = @P=@S =
2

�
e�r(T�t)

Z
1

0
R(F (�; T � t))

"
1

�2
(1� cos(

�(K � A(t))

S(t)
)�

K � A(t)

�S(t)
sin(

�(K � A(t))

S(t)
)

#
d�;

� = @2P=@2S =
2

�
e�r(T�t)

Z
1

0
R(F (�; T � t))

(K � A(t))2

S(t)3
cos

�(K � A(t))

S(t)
d�:

To compute � = @P=@t, one can make use of the PDE

�rP + Pt + rSPS +
1

2
�2S2PSS + SPA = 0; (37)

satis�ed by P because PA can be easily calculated:

@P=@A = � 2

�
e�r(T�t)

Z
1

0
R(F (�; T � t))

1

�
sin

�(K � A(t))

S(t)
d�:

To obtain other portfolio parameters such as � = @P=@r and � = @P=@�, the density

function f(y) (actually F (�; T � t)) has to be calculated at least twice using slightly di�erent

input parameters such as r and �. Fortunately, these portfolio parameters are not used as

widely as �, � and �.

4.2 Case II: time-to-maturity is longer than the length of the av-

eraging period.

When t < T 0,

P (t) = e�r(T�t)E
Q
t [(K � A(T ))+] = e�r(T�t)E

Q
t [(K �

Z T

T 0
S(u)du)+]

= e�r(T�t)E
Q
t [E

Q
T 0 [(K � S(T 0)

Z T

T 0
X(u)du)+]]

= e�r(T�t)E
Q
t [
Z
1

0
(K � S(T 0)y)+f(y)dy]; (38)
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where X(u) = S(u)=S(T 0) and f(�) is the density function of y =
R T
T 0 X(u)du.

4.2.1 Simpli�cations

Since

S(T 0) = S(t)e(r��
2=2)(T 0�t)+�(wQ(T 0)�wQ(t)) = S(t)eu;

where u = (r � �2=2)(T 0 � t) + �(wQ(T 0)� wQ(t)) is normally distributed with mean (r �

�2=2)(T 0 � t) and variance �2(T 0 � t), P (t) can be rewritten as

P (t) = e�r(T�t)
Z
1

�1

h(u)

 Z K
S(t)eu

0
(K � S(t)euy)f(y)dy

!
du =

2

�
e�r(T�t)

Z
1

�1

h(u)du
Z
1

0
R(F (�; T � T 0))d�

Z K
S(t)eu

0
cos(�y)(K � S(t)euy)dy

=
2

�
e�r(T�t)

Z
1

�1

Z
1

0
h(u)R(F (�; T � T 0))I(u; �)dud�; (39)

where h(�) is the density function of u, R(F (�; T � T 0)) is the real part of the Fourier

transformation F (�; T � T 0) of f(y) and

I(u; �) =
Z K

S(t)eu

0
cos(�y)(K � S(t)euy)dy =

S(t)eu

�2

 
1� cos

�K

S(t)eu

!
:

Therefore equation (38) has been reduced to a two-dimensional integral.

4.2.2 Put-call parity

Again,

C(t) = e�r(T�t)E
Q
t [A(T )]� e�r(T�t)K + P (t):

Since A(T ) =
R T
T 0 S(u)du,

E
Q
t [A(T )] =

Z T

T 0
E
Q
t [S(u)]du = S(t)(er(T�t) � er(T

0�t))=r:

Therefore, the prices of an Asian call and an otherwise identical put are related by

C(t) = P (t)� er(T�t)K + S(t)(1� e�r(T�T
0))=r: (40)
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4.2.3 Hedging parameters

Because of the explicit form of P (t) as a function of S(t), the portfolio parameters �, � and

� can be easily calculated.

� = @P=@S =
2

�
e�r(T�t)

Z
1

�1

Z
1

0
h(u)R(F (�; T � T 0))"

eu

�2
(1� cos

�K

S(t)eu
)� K

�S(t)
sin

�K

S(t)eu

#
dud�;

� = @2P=@2S =
2

�
e�r(T�t)

Z
1

�1

Z
1

0
h(u)R(F (�; T � T 0))

K2

S(t)3eu
cos(

�K

S(t)eu
)dud�:

To compute � = @P=@s, one can make use of the PDE

�rP + Ps + rSPS +
1

2
�2S2PSS = 0; (41)

satis�ed by P when t � s < T 0. Again, to compute � = @P=@r and � = @P=@�, f(y) (i.e.

F (�; T � T 0)) has to be calculated at least twice using slightly di�erent inputs r and �.

4.3 Computing the density function

It is now time to show how to obtain the density function of the sum of a log-normal process.

As it has been shown, one only needs to consider the log-normal process X(t) = S(t)=S(0).

That is, one only needs to consider those log-normal processes which always start from

X(0) = 1.

It has been shown in section 2 that the characteristic function F (X(t); �; T � t) of the

sum of a Markov process satis�es a PDE. In the present case, it is

�i�XF + Ft + rXFX +
1

2
�2X2FXX = 0: (42)

The corresponding terminal condition is

F (X(T ); �; 0) = (1; 0):
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No closed-form solution is known for this PDE subject to the terminal condition. Numerical

methods have to be employed to solve it.

Because of the linearity of the stochastic di�erential equation (SDE)

dX(t) = rX(t)dt+ �X(t)dwQ(t);

it should be noted that, in functional form, the solution to the above PDE has to be of

F (�X(t); T � t).16 That is � and X(t) always appear together as a product. This can be

easily seen from a change of variable Y (t) = �X(t). In terms of Y , the PDE and terminal

condition are given by

�iY F + Ft + rY FY +
1

2
�2Y 2FY Y = 0;

and

F (Y (T ); 0) = (1; 0):

Therefore � and X(t) always appear together as one argument Y = �X. This property

drastically speeds up the process of obtaining the Fourier transformation of the density

function of the sum as it will be seen momentarily.

The implicit �nite di�erence method is suggested to be used to solve the above PDE.17

The usual change of variable Z = log(X) will not be made because an evenly spaced grid

in X (i.e. evenly in �, see below.) facilitates the inversion of the Fourier transformation to

get the density function. The implicit �nite di�erence method is chosen because it ensures

convergence.

16Without confusion, the same F is used to represent the new functional form.
17It is noted that solving the system of equations in an implicit �nite di�erence scheme does not involve

inverting a matrix. In fact, the system of equations can be solved in O(N) steps, where N is the number of

discrete values of X in the grid. For detail, see Courtadon (1982).
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Let X = Xmin = 0 and X = Xmax represent the lower and upper boundaries in the grid

for X. To solve the PDE, besides the terminal condition F (�X(T ); 0) = (1; 0), two boundary

conditions at X = Xmin and X = Xmax need to be speci�ed. It should be clear that

F (�Xmin = 0; T � t) = (1; 0) for any 0 � t � T

because, when X(t) = 0, the process is absorbed at the origin and y =
R T
t X(u)du = 0. For

the boundary condition at X = Xmax, one can make use of the Riemann-Lebesgue Lemma.
18

Therefore,

F (�Xmax; T � t) = (0; 0) for any 0 � t � T :

For a given �, by working backwards to t = 0, one not only gets F (�X0; T ) = F (�; T )

corresponding to initial value X(0) = 1, but also gets F (�Xi; T ) corresponding to initial

process value Xi in the grid. In most of the derivative pricing applications using a �nite

di�erence method, the values in the grid at the initial date corresponding to the underlying

process values other than its initial value are wasted. This seemingly waste of calculations

turns out to save a lot of computations in the present application.

If one reinterprets F (�Xi; T ) as the value of a new Fourier component corresponding to

initial process value X0 = X(0) = 1 and a new Fourier component �Xi, then one will have as

many di�erent Fourier components as the number of discrete values of X in the grid. Thus

by solving the PDE (grid) once, one will be able to get the whole spectrum of the Fourier

transformation, thanks to the linearity of the process

dX = rXdt+ �Xdw:

18Riemann-Lebesgue Lemma states that if f(x) is Riemann integrable, then lim

�!1

R b
a
f(x) sin(�x)dx =

lim

�!1

R
b

a
f(x) cos(�x)dx = 0. See Marsden and Ho�man (1993).
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It is clear now why an evenly spaced grid in X is chosen. After the scaling, one will have

the Fourier components �Xi evenly spaced with step size ��X for a given �, where �X is

the step size of X in the grid. Fourier inverse transformation of F (�i; T ), where �i = �Xi,

yields the density function of the sum with initial process value X(0) = 1. Of course, one

could have begun with � = 1. Then the value of F (Xi; T ) in the grid corresponding to the

initial date t = 0 will be the Fourier transformation corresponding to the Fourier component

�i = Xi.

4.4 Tabulation of the density function

In fact, the Fourier transformations for shorter averaging periods are also obtained. This

is because the values at every time step have been calculated, and for whatever averaging

period, the initial value X(0) is always 1. Therefore, if one solves the corresponding PDE for

the sum of averaging length T , one will also obtain the Fourier transformations for sums of

all averaging lengths < T , all with the initial value X(0) = 1. It is worthwhile to emphasize

that the density function f(�) of the sum of X(�) will be a function of the length of the sum

interval T � t only (besides r and �).19 The main result is that by solving the PDE once, one

will be able to get the density function of the sum of X(�) for di�erent summation periods.

For a given stock, the density function of the sum of X(u) = S(u)=S(0) needs only to be

calculated once and can be stored for later use. For example, at any date t, the density

function of the sum of X(u) = S(u+ t)=S(t) from u = 0 to u = T � t, no matter what stock

price St is, is always given by f(y), where f(y) is the density function of y =
R T�t
0 X(u)du.

Therefore, for a given stock, the density function of the sum can be tabulated according to

di�erent length of the averaging period.

19It depends on the initial value X(0), but X(0) = 1 always.
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4.5 Computation e�ciency consideration

It is clear from the previous subsection (subsection 4.3) that a two-dimensional (including the

time dimension) PDE needs to be solved to obtain the Fourier transformation F (�; T � t)

of the density function of the sum of X(�), which always start with X(t) = 1. This is a

two-dimensional problem.

In the case of subsection 4.1 (time-to-maturity is shorter than the length of the averaging

period), the present approach needs to compute the one-dimensional integral in equation

(35). Therefore in this case, it is overall a two-dimensional method. On the other hand, the

usual PDE approach solves a three-dimensional PDE (a three-dimensional method). The

variable reduction technique of Rogers and Shi (1995) reduces the dimensionality of the

PDE approach from three to two. Thus their method and the present approach should have

comparable e�ciency.

In the case of subsection 4.2 (time-to-maturity is longer than the length of the averaging

period), the present approach needs to compute the two-dimensional integral in equation

(39). But once again, our approach is overall a two-dimensional method. This compares

favorably to the three-dimensional method of the usual PDE approach and should have

comparable e�ciency as the two-dimensional approach of Rogers and Shi (1995).

5 Pricing of Average-Rate Options in More General

Settings

It will be shown in this section that the method presented can be easily extended to the

multiple state variable cases. Without loss of generality, for average interest rate derivatives,

a two-factor model will be considered. For average equity options, a stochastic interest rate

model will be considered.
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First consider the two-factor average interest rate derivatives. Let

dr1 = �1(r1; r2; t)dt+ �1(r1; r2; t)dw
Q
1 ;

dr2 = �2(r1; r2; t)dt+ �2(r1; r2; t)dw
Q
2 ; (43)

where dwQ1 and dw
Q
2 are two standard Wiener processes and correlated with correlation

coe�cient �.

Suppose one wants to �nd the density function of y(t) =
R t
0 r(u)du, where r = r1 + r2.

Consider the Fourier transformation of the density function of y(t) (characteristic function

of y(t)),

F (r1(0); r2(0); �; t) = E
Q
0 [exp(�i�

Z t

0
r(u)du)] =

Z
1

0
e�i�yf(y)dy;

where f(�) is the density function of y(t).

To �nd F (r1(0); r2(0); �; t), a PDE similar to the one derived in section 2 will be derived.

To this end, de�ne

F (r1(s); r2(s); �; t� s) = EQ
s [exp(�i�

Z t

s
(r1(u) + r2(u))du)]:

Because F �(r1(s); r2(s); k; t � s) = exp(�i� R s0 (r1(u) + r2(u))du)F (r1(s); r2(s); �; t � s) is a

martingale, Ito's lemma implies

�i�(r1 + r2)F + Fs + �1Fr1 + �2Fr2 +
1

2
�21Fr1r1 +

1

2
�22Fr2r2 + ��1�2Fr1r2 = 0: (44)

The terminal condition is

F (r1(t); r2(t); �; 0) = (1; 0):

If the discount bond price in such a two-factor model is known, scaling of the parameters

will give the solution of the above PDE. When closed solutions are not available, numerical
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method has to be used. But still the dimensionality of the problem has been reduced by

one.20

Consider now an equity average option when the risk-free rate is stochastic and correlated

with the stock price and the variance of the return is stochastic. Let

dS = rSdt+ S�(S; t)dwQ1 ;

dr = �(r; t)dt+ �(r; t)dwQ2 ; (45)

where dw
Q
1 and dw

Q
2 are two standard Wiener processes and correlated with correlation

coe�cient �.

Suppose one wants to �nd the density function of y(t) =
R t
0 S(u)du. If one de�nes

F (r(s); S(s); �; t� s) = EQ
s [exp(�i�

Z t

s
S(u)du)];

F (r(0); S(0); �; t) will be the Fourier transformation of the density function of y(t). By now

it is clear that F (r(s); S(s); k; t� s) satis�es the following PDE:

�i�SF + Fs + rSFS + �Fr +
1

2
�2S2FSS +

1

2
�2Frr + �S��FSr = 0: (46)

The terminal condition is

F (r(t); S(t); �; 0) = (1; 0):

It should be pointed out that if �(S; t) is a constant, the scaling technique used for the log-

normal process would still work because of the linearity of the stochastic di�erential equation

(SDE) satis�ed by the stock price. Once the Fourier transformation of the sum is obtained,

Fourier inverse transformation will yield the density function. Pricing of Asian options can

be proceeded as in sections 3 and 4.

20The PDE satis�ed by the price of a derivative involves three state variables: r1(t), r2(t) and the running

sum y(t) so far.
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6 Summary and discussions

A 
exible and e�cient approach for pricing Asian options for general underlying processes has

been proposed. This approach overcomes most of the drawbacks of the other approaches.

Analytical formulas for Asian CIR (1985) interest rate options are obtained. Analytical

formulas can also be derived for the more general a�ne class of term-structure models.

A very e�cient numerical method is proposed for pricing Asian equity options when the

underlying process is log-normal. Extensions of the techniques to the cases of multiple state

variables have also been discussed.

Even though the presentation has only concentrated on the CIR (1985) square-root in-

terest rate Asian options and the log-normal equity Asian options, the techniques obviously

apply to other Asian options such as currency options when the underlying follows either

the CIR (1985) square-root process or the log-normal process.
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Appendix A

We prove in this appendix that ~Z and ~B given in equations (19) and (20) are single-valued

functions, and the principal branch of the multivalued function ~A = ~Z(2��=�2) given in (18)

should be chosen.

For functions ~Z and ~B, the only possibility of multiplicity comes from the fact that

� =
p
�2 + 2i��2 is a double-valued function. Let � = �(x + iy). Simple algebra will show

that same results would obtain for ~Z and ~B by using either � = x + iy or � = �(x + iy).

Therefore ~Z and ~B may look like multivalued functions, but they are not. However, when

2��
�2

is not an integer, ~A = ~Z(2��=�2) is a multivalued complex function. We now show that to

be consistent with the de�nition of F (r(s); �; t� s) in equation (2), the principal branch of

this multivalued function should be chosen.

From the de�nition

F (r(s); �; t� s) =
Z
1

0
e�i�yf(y)dy;

it is obvious that F (r(s); �; t� s) is single-valued and as � �! 0, F (r(s); �; t� s) �! (1; 0).

Let ~Z = j ~Zjei� where � 2 (��; �]. The multivalued function ~A = ~Z(2��=�2) is given by

~A = j ~Zj(2��=�2)ei(2��=�2)�+i(2��=�2)2n�;

where each integer n de�nes a branch for the multivalued function ~A = ~Z(2��=�2). It is easy

to check that as � �! 0, j ~Zj �! 1, and � �! 0. Therefore as � �! 0,

~A = ~Z(2��=�2) �! ei(2��=�
2)2n�:

But since F (r(s); �; t�s) �! (1; 0), and e�i�
~B �! (1; 0), it must be the case that ~A �! (1; 0)

as � �! 0. It follows then that the branch with n = 0 should be chosen.21

21Most computers, if not all, implement multivalued complex functions using the principal branch.
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Appendix B

The Girsanov theorem22 will be used to derive the forward risk-neutral measure in this

appendix.

Suppose one wants to compute the following expectation

H(r(0); t = 0) = E
Q
0 [e

�

R T
0
r(u)duH(fr(�)g; T )]; (47)

where fr(�)g indicates that H(�; T ) could depend on the sample path of r(�) from 0 to T and

Q denotes the risk-neutral probability measure. Let P (r(0); T ) be the discount bond price

at t = 0 with maturity T . De�ne

�T =
e�
R T
0
r(u)du

�(r(0); T )
:

Then

H(r(0); t = 0) = �(r(0); T )EQ
0 [�TH(fr(�)g; T )]: (48)

It is clear that �T is strictly positive and EQ
0 [�T ] = 1. Therefore it can be used as a Radon-

Nikodym derivative to de�ne a probability measure R equivalent to the original measure Q

such that

ER
0 [1fAg] = E

Q
0 [�T1fAg]

for any event A. Under the new measure R,

H(r(0); t = 0) = �(r(0); T )ER
0 [H(fr(�)g; T )]: (49)

To �nd R, de�ne the likelihood ratio

�t = E
Q
t [�T ] =

e�
R t
0
r(s)ds�(r(t); T � t)

�(r(0); T )
:

22For more details on Girsanov theorem and related materials, see Karatzas and Shreve (1991).
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It follows that

log �t = �
Z t

0
r(s)ds+ log�(r(t); T � t)� log �(r(0); T ):

Ito's lemma implies

d log �t = �rdt+ d�(r(t); T � t)

�(r(t); T � t)
� 1

2

 
d�(r(t); T � t)

�(r(t); T � t)

!2

=

(�r� + �t + u(r)�r +
1

2
�2(r)�rr)dt=�+

�(r)�r

�
dwQ � 1

2

 
�(r)�r

�

!2

dt:

The term inside the bracket is the fundamental PDE satis�ed by discount bond price �, thus

d log �t = �1

2

 
�(r)�r

�

!2

dt+
�(r)�r

�
dwQ:

Another application of Ito's lemma yields

d�t

�t
=
�(r)�r

�
dwQ:

Now Girsonov's theorem implies that

wR(t) = wQ(t)�
Z t

0

�(r; u)�r(r; T � u)

�(r; T � u)
du (50)

is a standard Wiener process under R. In the di�erential form, one has

dwR = dwQ � �(r)�r

�
dt: (51)
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Appendix C

The result in appendix A will be applied to the CIR (1985) square-root interest process in

this appendix. Suppose the interest rate process under the risk-neutral measure Q is given

by

dr = �(� � r)dt+ �
p
rdwQ: (52)

For this interest rate process, the discount bond price at time t with maturity date T is given

by

�(r(t); T � t) = A(T � t)e�B(T�t)r(t); (53)

where A and B are given in section 3. From equation (5) in appendix A it follows that under

the forward risk-neutral probability measure R,

dwQ = dwR +
�(r)�r

�
dt = dwR � �

p
rB(T � t)dt: (54)

Therefore under R the interest rate process is given by

dr = �(� � r)dt+ �
p
r(dwR � �

p
rB(T � t)dt)

= (�� � (�+ �2B(T � t))r)dt+ �
p
rdwR: (55)

The density function of r(T ) at time T conditional on r(t) at time t is the noncentral �2

function:23

g(z) = (�+  )e�(�+ )z��
 
(�+  )z

�

! q

2

Iq(2
q
�(�+  )z); (56)

where Iq(x) is the modi�ed Bessel function of the �rst kind, � =
p
�2 + 2�2 and

q = 2��
�2
� 1, � = �2e�(T�t)r(t)

�+ 
,

� = 2�
�2(e�(T�t)�1)

,  = �+�
�2

.

23See Chen and Scott (1992).
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